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Time coarse graining near critical points 

A D Bruce and D Nicolaides 
Department of Physics, UniFersity of Edinburgh, Edinburgh EH9 352, U K  

Received 2 2  June 1987 

Abstract. We investigate the statistical properties of local variables, coarse grained in time, 
in systems undergoing continuous phase transitions. A general theory is developed which 
suggests universal scaling behaviour in the limit of large coarse-graining times. The 
predictions are  substantiated with Monte Carlo studies of two-dimensional scalar models.  
A simple fractal model of the t ime profile of the ordering variable is developed which 
captures and  illuminates its timescale-invariant character. The theory is used to study the 
critical behaviour of local resonance lineshapes. In  the two-dimensional case studied 
explicitly the critical slowing down is shown to  drive a crossover to  a split slow-motion 
lineshape. 

1. Introduction 

The distinctive behaviour of a system near a critical point originates in the existence 
of configurational structure persisting over lengths and times long on microscopic 
scales. Experimentally such structure is most naturally probed with the aid of scattering 
studies tuned to the relevant regions of reciprocal space. In the theoretical context 
the important structure is customarily exposed with the aid of spatial coarse-graining 
methods which monitor either coupling constant flow (in the standard implementation 
of the renormalisation group method: Wilson and Kogut (1974)) or configuration flow 
(in complementary realisations of the renormalisation group, focusing on the expecta- 
tion values of the operators: Binder (1981)). In this paper (a brief preliminary report 
of which has already appeared: Nicolaides and Bruce (1986)) we examine an  alternative 
way of probing the important configurational structure, which rests upon a temporal 
rather than a spatial coarse graining. 

The basic idea is simple. It is most easily presented in the context of a droplet 
picture of an Ising model near its critical point (Bruce and Wallace 1983), although, 
we believe, the idea is of more general validity than this particular imagery. Within 
the droplet picture the configuration of the system, at any instant, consists of a hierarchy 
of droplets of the two phases, nested inside one another, and with a range of length 
scales extending up to a maximum set by the correlation length 6. We consider, then, 
within this framework, the behaviour of a single spin represented by a local coordinate 
d. At any instant this spin will be found in one or other of its two states. The state 
will change (the spin will flip) when the spin is traversed by a droplet boundary. The 
predominant structure of the time profile of the local coordinate will reflect the time 
evolution of small length scale structure: thus, in particular, the majority of spin flips 
will be associated with the passage of the relatively small droplets whose abundance 
is greatest, and the typical time, T,, between spin flips will (like the concentration of 
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the smallest droplets) be largely insensitive to the phase transition. However, the time 
profile of the local coordinate must also reflect the existence and behaviour of large 
length scale structure: in particular, although at any instant the coordinate must assume 
one or other of two values, it will have a predisposition to one state or the other 
according to the nature of the largest droplet within which it is embedded. More 
generally, it should be possible in principle to discern, in the behaviour of the local 
coordinate, a whole hierarchy of timescales, intermediate between the 'inner' timescale 
T, and an 'outer' limit T~ (of order 6' where z is the dynamic critical index) reflecting 
the influence of the whole hierarchy of droplets of different length scales. In practice 
it is not easy to discern the effects of the larger length scale structure, superimposed, 
as it is, on the more rapid fluctuations associated with the smallest droplets. To see 
the former one needs to suppress the latter. This aim is realised in the study of a 
coordinate M ,  measuring the mean of the local variable C#J over some averaging time 
T ;  the time profile of M ,  then represents a time-coarse-grained form of the profile of 
4 itself. For averaging times T large compared to T, the effects of the short length 
scale structure will be averaged away, exposing the contributions of the large length 
scale structure. It is well known that the large length scale structure has universal 
features (Bruce 1981). Consequently one may expect that the large timescale structure 
of the local variable, revealed in this way, will also have universal characteristics. 

This picture is more directly relevant to experimental studies of phase transitions 
than it might appear. In particular local resonance ( E P R  or N M R )  studies explore the 
behaviour of local variables, time averaged by motional narrowing effects (see, e.g., 
Kubo 1962). Indeed it is this phenomenon which provided the original insight and  
motivation for the present study (Bruce et a1 1979). 

The ideas sketched above are developed in a more concrete fashion in the sections 
which follow. We will focus on the behaviour of the moments M j " ' = ( M : )  of the 
time-coarse-grained variable, and  the associated distribution P (  M, ) .  In § 2 we develop 
a general scaling theory for the moments, implying a universal scaling structure for 
the distribution P (  M 7 ) ,  in close analogy with its counterpart P (  M I ) ,  characterising 
the distribution of the ordering field spatially coarse grained over a region of linear 
dimension 1 (Binder 1981, Bruce 1981). In 4 3 we present the results of Monte Carlo 
studies of two-dimensional scalar models, designed to test and extend the scaling 
theory. The results substantiate the predicted scaling behaviour of the moments, provide 
an estimate for the dynamic critical index z consistent with (though not as precise as) 
the most recent and detailed study using spatial coarse-graining techniques (Williams 
1985), and substantiate the claimed universality of the distribution P ( M , ) ,  to within 
minor discrepancies which we attribute to finite-size effects. It transpires that this 
distribution is remarkably similar to its spatial counterpart, P (  M , )  (Binder 1981), clear 
testimony in support of the basic thesis that the time-coarse-graining process allows 
access to large length scale (universal) configurational structure. In 9 4 we develop a 
simple fractal model of the time profile of the time-coarse-grained variables, in the 
spirit of the droplet theory (Bruce and Wallace 1983). The model accounts for the 
essential structure of the MT distribution. In  9 5 we use the theory of the time-coarse- 
grained variable to explore the behaviour of local resonance lineshape functions near 
a critical point. We express the lineshape function in terms of the M ,  distribution. In 
the 'fast' motion regime the lineshape is dominated by the behaviour of the M ,  
distribution for coarse-graining times large compared to the outer timescale. In this 
regime the distribution is Gaussian and the lineshape is Lorentzian. In the 'slow' 
motion regime the lineshape is controlled by the behaviour of the M ,  distribution for 
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coarse-graining times small compared to the outer timescale; in this regime the distribu- 
tion is non-Gaussian and the lineshape is non-Lorentzian. The simulation results for 
the M ,  distribution in this regime are used to compute the slow motion lineshape 
function: for the two-dimensional universality class studied here a split-line structure 
emerges. Our results and conclusions are summarised in 0 6. 

2. Theory of the time-coarse-grained distribution 

2.1. Dejinitions 

We will develop our arguments in the context of a system exhibiting a phase transition 
associated with the ordering of a set of Ld scalar coordinates 4/ ( t )  ( j  = 1 . . . L d )  
occupying the sites of a d-dimensional lattice of linear dimension L. With the exception 
of isolated (multicritical) points in the space of model parameters such a system is in 
general expected to exhibit the equilibrium critical behaviour of the Ising universality 
class. We will suppose, moreover, that neither the total energy nor the order parameter 
is a conserved quantity: the implied dynamic behaviour should then fall into the 
universality class of the kinetic k ing  models whose study, by Monte Carlo simulation, 
is the subject of the following section. 

We define a time-coarse-grained local variable by 

1 
M;, =- 1; 4/,(t) dr. (2.1) 

We will refer to 7 as the coarse-graining time. In general we will be concerned with 
the behaviour of a single coarse-grained variable and the site index j in (2.1) can be 
omitted without ambiguity. 

The statistics of the time-coarse-grained variables are reflected in the moments 

M:"' = ( M ;) (2.2a) 

or, in an alternative and  sometimes more convenient form, in the connected moments 
or cumulants (see, e.g., Cramer 1946) 

J : " ' = ( M : ) ,  (2.26) 

where c denotes 'connected part'. The moments (or  cumulants) together define the 
distribution P( M,)  of the coarse-grained variable, through its characteristic function 
E;( Y ) :  

P ( X )  ZE ( S ( X  - M,) )  
. r x  

( - i  Y ) "  
n !  

=f-..- M Y '  

= e x p j  1 -----Jyl). ( - i  Y ) "  
, , = I  n !  

(2.3a) 

(2.3b) 

The scaling properties of the distribution may thus be inferred from the scaling 
behaviour of the moments, which we now examine. 
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2.2. Scaling theory 

In the course of this paper we shall be principally concerned with the behaviour at 
the critical point. In these circumstances (in fact, for all temperatures T 2  T,) all 
moments M y '  with n odd vanish by the (supposed) symmetry of our model. We begin 
by studying the simplest case, namely the second moment precisely at criticality. 

Appealing to the definitions (2.1) and (2.2) we see that 

J L 2 ' =  M y ' = _ ;  T -  1; dr,  5 , ' d t 2 ( 4 , ( r , ) d , ( t d ) .  (2.4) 

Introducing time-and-space Fourier transformed variables by 

this expression may be recast in the form 

(2.5) 

where C ( k ,  w )  is the dynamic correlation function defined by 

( 4 k , ( w l ) 6 k 2 ( w 2 ) )  = 2 r a ( w ,  + w 2 ) a k , + k 2 C ( k , ,  wl) .  (2.7) 

We assume now that there exists a, possibly small, region of k and w space ( k <  k, 
and Iwi < w,  say) within which dynamic scaling holds. We proceed to argue that, for 
sufficiently large coarse-graining times, the second cumulant is dominated by contribu- 
tions originating in this scaling region. Consider first the contributions arising from 
modes of wavevectors k >  k , .  For such modes we may assume that there exists a 
maximum value for C ( k ,  w )  which remains finite at criticality 

C ( k ,  w ) G  C:lx k >  k , .  (2.8) 

The implied contribution to J:" can then be bounded by 

Now consider the contributions to (2.6) originating in portions of w space where 
IwI > w,. Again we assume that there exists a finite value CEix such that 

C ( k ,  w )  c::, Iwl > U,. (2.10) 

The implied contributions to Jb2 may then be bounded by 

(2.11) 

Finally we consider the contribution from the range of k and w space in which dynamic 
scaling holds. In this regime we may write (Hohenberg and Halperin 1977) 

? ( w / k ' ) .  (2.12) C ( k ,  = , / , - ( 2 - 7 ) - :  

The associated contribution to (2.6) is then of the form 

(2.13) 



Time coarse graining near critical points 

Changing variables of integration appropriately one finds that 
J'," = M / ~ J  j 1 2 J T - - Z A -  

where 

d - 2 + 7  p 
2z zv 

- _  A, = - 

6375 

(2.14) 

(2.15) 

while .?2' exists as a finite 7-independent constant provided d < 4. In this regime A, <; 
and so it is always possible to choose sufficiently large coarse-graining times that the 
second moment is indeed dominated by the region of k and w space for which C ( k ,  w )  
obeys dynamic scaling. 

Now consider the nth-order cumulant. The analogue of (2.6) is 

L - ' n - ' ' d 1 2  276(Wl+ .  . .+w,)8kl+ +k,,C"'(kl . . .  k , , w l . .  . U,) (2.16) 

where the connected n-point correlation function C'"' is defined by 

( d k , ( w l )  . . .  ~ k , , ( w n ) ) = 2 7 6 ( w l + . . . + w n ) S k , +  . + k , , L (  n - 2 J d - 2  C ' " ' ( k , .  . . k, ,  w 1 . .  . w n ) .  
(2.17) 

In the limit of large T the sine functions in (2.16) ensure that the integrals are dominated 
by the region in which the frequencies w1 . . . U, are small ( O ( ~ / T ) ) .  Let us consider 
the contribution arising from the regime in which, moreover, the wavevectors kl . . . k,  
are small (compared to k l ) .  The correlation function (2.17) should then exhibit the 
dynamic scaling form implied by the homogeneity relation 

C""(k , .  . . k , ,  w ,  . . . w,) = a " , ' C ( a k , .  . . ak, ,  a L w l . .  . a'w,) 

where 

( 2 . 1 8 ~ )  

A, = ( n  - l ) z + ( n  - 1)d  - nzh,. (2.18 b )  

The implied contribution to the nth-order cumulant follows as 

As suggested by the notation we believe that this contribution does indeed dominate 
the asymptotic (large T )  behaviour of the cumulants. However the complexity of the 
n-point functions makes it hard to justify this claim analytically. Thus we will regard 
(2.19) as a hypothesis to be checked against the simulations reported in the following 
sections. 

The scaling hypothesis is readily extended to allow for the existence of an outer 
length scale, Lo,  for the critical fluctuations, originating either in the finite system size 
L or in a finite correlation length 5. Explicitly we anticipate that (provided the length 
scales 5 and L are well separated) 

J ~ ' - j ~ ' ( 7 / " ) T - ' ' -  (2.20) 

where Lo is to be identified with L or 5 according to whether L<< 6 or L >> 5 (different 
scaling functions being appropriate in the different regimes). 
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The scaling behaviour of the distribution P (  M , )  now follows readily. Combining 

(2.21a) 

(2.3) and (2.2) we find that 

P(  M ,  ; r, Lo)  5 b.rA-P( bTA- M ,  ; r /  7”) 

with 

7 0  = cL& (2.21 b )  

We have introduced constants b and c with which to absorb the non-universality of 
the scale of the ordering variable and the timescale of the dynamics. Modulo the 
arbitrariness of the conventions used to choose b and c we then expect that the scaling 
function e( m, ?) will be universal. For large 7 = r /  ro it is clear that, since M ,  is then 
a sum of essentially uncorrelated variables, the distribution will have a Gaussian form 
(centred on m = 0 for T > T, and, given appropriate boundary conditions, on a non-zero 
value of m for T < T,). In the small 7, critical, limit on the other hand all the cumulants 
(2.19) clearly play a role, and the distribution P * ( m )  = P ( m ,  0) must in general have 
some non-trivial non-Gaussian form reflected in some non-trivial fixed-point value, 
GT, of the cumulant ratio 

G; = - ~ ‘ p ) / 2 ( ~ ) ~  = ( ~ ( M s ) ~  - ( ~ 3 ) / 2 ( ~ 5 ) ’  (2.22) 

in contrast to the trivial fixed point values (0, 1) appropriate in the Gaussian ( T >  
T,, T <  T,) regimes, In the following section we check out these expectations with the 
aid of computer simulation. 

3. Monte Carlo studies of time-coarse-grained variables 

In this section we report the results of extensive Monte Carlo ( M C )  studies of the 
behaviour (basically the statistics) of time-coarse-grained variables near critical points. 
We have chosen to examine systems with d = 2  space dimensions. There are two 
reasons for focusing on this ‘low’-dimensional case. Firstly it is clear on very general 
grounds that the critical point statistics of the time-coarse-grained variables will differ 
more significantly from the classical (Gaussian) limit the lower the space dimension. 
Secondly, and more specifically, we may anticipate that the nested droplet picture 
(Bruce and Wallace 1983), which rests heavily upon low-dimensional approximations, 
should provide a qualitatively reasonable framework in which to interpret the observed 
behaviour. 

We have studied two d = 2 scalar models: the spin-; Ising model at, and near, the 
Onsager critical point coupling KL’ 2 ,  = 0.4404. . .; and the spin-1 Ising model at the 
value of the critical coupling, K:”=0.59048 indicated by the most recent series 
expansion studies (Adler and Enting 1984). (We remark that, in recent independent 
work, we have actually refined this estimate somewhat: Nicolaides and Bruce (1988).) 
Our MC procedure employed a standard Metropolis algorithm implemented in parallel 
on an ICL Distributed Array Processor. For a general discussion of parallel coding 
strategy the reader is referred to Hockney and Jessope (1981). The claim that the 
dynamics thus generated falls into the anticipated universality class (that of the kinetic 
Ising model with neither energy nor order-parameter conservation) has been substanti- 
ated in earlier studies by Williams (1985). 

Our studies were conducted on systems of N = L2 spins with L values ranging from 
8 to 128. In each case the system was equilibrated for a number, T ~ ,  of timesteps ( M C  
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steps per spin) ranging from T~ = 2 x 10' for L = 8 to T~ = 10' for L = 128. Values of 
the coarse-graining variables M , ,  were obtained by monitoring the values of the local 
variables c$, at a number N, of well separated sites (N, = 1 for L = 8, N, = 8 for L = 128) 
over the appropriate interval T,  updating the system without further observation for 
some interval T~ (ranging from T~ = 10 for L = 8 to T ,  = 2 x lo3 for L = 128) and repeating 
the procedure, thus building up  a distribution of coarse-grained variable values. For 
each parameter set (characterised by a given K ,  L, T and model type) 64 such 
distributions were constructed, checked for their statistical independence and utilised 
to determine the mean values and associated uncertainties which we now present. 

We begin by exploring the dependence of the coarse-grained variable statistics 
upon the coupling strength. Figure 1 shows the cumulant ratio G, (equation (2.22)) 
as a function of the coarse-graining time T for a spin-f system with L = 128, at the 
critical coupling K ,  and at  two non-critical couplings K,+ AK and K,- 2AK with AK 
chosen to give a correlation length of approximately eight lattice spacings. In the 
high-temperature regime ( K  < K,) G, falls towards zero with increasing T, consistent 
with a distribution approaching the limiting form of a Gaussian centred on zero. In 
the low-temperature ( K  > K,) region G, quickly rises towards unity, consistent with 
a limiting ordered phase distribution composed of two Gaussians, symmetrically 
disposed about zero, and  narrow (vanishingly so, asymptotically) on the scale of their 
separation. Finally, precisely at the critical point ( K  = K , )  the cumulant ratio quickly 
settles to an intermediate value in the vicinity of 0.86 independent of the coarse-graining 
time (on the scale of the figure), indicating a timescale-invariant fixed-point distribution. 

+ > , , < , , , , , , , I  

0 90 180 270 360 L50 560 
Coarse-graimng t i m e  T 

Figure 1. The cumulant ratio G7 (equat ion ( 2 . 2 2 ) )  as  a function of coarse-graining t ime i 
for the d = 2 spin-; lsing model,  of side L = 128 lattice spacings, at couplings K ,  (E], 
K , + l K  (A) and  K , - 2 A K  (C) where . l K  is chosen so that the correlation length for the  
tWo non-critical systems is approximately eight lattice spacings, 

The behaviour away from the critical point is in accord with the qualitative 
expectations offered at the conclusion of the preceding section and (with a brief 
exception in D 5 )  will not be pursued further here. We proceed, rather, to investigate 
in more detail the behaviour at the critical coupling. The critical behaviour cannot, 
of course, be strictly scale-invariant in a finite system. Indeed a slight upward drift is 
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just discernible in the 'limiting' behaviour of G,, at K, ,  shown in figure 1. This 
behaviour is more clearly evident, and its origin explored, in figure 2 ( a )  which displays 
the value of G, (on a greatly expanded scale) as a function of 'T, at K , ,  for a variety 
of L values. For a given r there is a strong dependence upon L which, however, 
clearly diminishes as L increases. For each L, G, first decreases and then increases 
with increasing r ;  the changeover point (the minimum in G,) occurs at a coarse-graining 
time T,,, which increases with increasing L, and the slope of G, beyond 'T,,, decreases 
with increasing L. 

To account for these results we must recall that timescale-invariant behaviour can 
be realised only within a window of coarse-graining times r satisfying 

(3.1) 

For times r insufficiently large on the scale of the inner timescale T ,  (the typical spin-flip 
time) there will exist corrections to  scaling behaviour originating in irrelevant scaling 
fields. In  the present case it appears that these corrections are such that the scale- 
invariant limit is approached from above as, indeed, one might anticipate (though the 
inference is not guaranteed) given that in the 'T-, 0 limit G7 must approach unity, since 
the distribution of the M ,  variables must then approach the double delta function 
form of the local variable distribution. 

For times r insufficiently small on the scale of the outer timescale 7,) (here of order 
L') there will exist finite-size corrections to the bulk scaling behaviour: to the extent 
that the irrelevant scaling fields are negligible, the cumulant ratio will (cf (2.21)) be a 
function of the 'scaled' coarse-graining time f = r /  ro.  Figure 2( 6 )  shows the behaviour 
of GT (for the larger system sizes) as a function of f. We have made the assignment 
z = 2.13 (discussed below) and have chosen for the constant c appearing in equation 
(2.216) the value c=(128)- '  (so that f =  r for L =  128). The figure suggests that a 
gradual approach, with increasing L, to a single scaling function is plausible. The 
qualitative character of this scaling function is also intelligible by analogy with the 
behaviour of the distribution of spatially coarse-grained variables M , .  Physically one 
might anticipate that the behaviour of the M7 variables would mirror that of the M ,  
variables for coarse-graining lengths 1 satisfying r - 1'. There exists no systematic study 
of the dependence of the statistics of the M ,  variables upon the system size L. Two 
limiting cases have, however, attracted considerable attention. For 1 = L it is known 
(Bruce 1985, Burkhardt and Derrida 1985, Nicolaides and  Bruce 1988) that the M ,  
critical distribution approaches ( for  large 1 = L )  an 1-independent form characterised 
by a fixed point cumulant ratio GY= = 0.91 ( in  the case of the d = 2 Ising universality 
class with periodic boundary conditions). On the other hand, for 1 values small 
compared to L (Binder 1981, Bruce 1981) there is evidence for a scale-invariant limit 
with GE< L=0.84. The implied increase in G, (as a function of I / L )  between these two 
limits is suggestively similar to the behaviour shown in figure 2. Indeed, if one attempts 
to use the data shown in figure 2 to assign a value to the scale-invariant limit G;,." 
one finds a result very close to the corresponding limit for the spatially coarse-grained 
variables. However, since this limit is clearly approached non-analytically as r /  T ~ +  0 
there are substantial uncertainties in the extrapolation procedure. 

The close similarity between the statistics of the M ,  and M ,  variables is more fully 
evident in the structure of the corresponding distribution functions. Figure 3 shows 
the distribution of M ,  values ( for  positive M,: the distribution is symmetric about 
M ,  = 0) for the spin-: Ising model, at criticality, with L = 128 and for a scaled coarse- 
graining time r = 79 (selected as a compromise between the two constraints expressed 

7, << 7 << 'To. 
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Figure 2. ( a  1, The cumulant ratio G, for the d = 2 spin-f k i n g  model, at K c ,  as  a function 
of the coarse-graining time T for a variety of system sizes L: 8 (x ) ,  16 (+), 32 (C), 64 (0) 
and  128 ( A ) .  ( b )  The cumulant ratio G, for the d = 2  spin-f lsing model,  at K, ,  as  a 
function of the scaled coarse-graining time 7 defined in the text, for a variety of system 
sizes L: 32 (E l ) ,  64 (3) and  128 ( A ) .  

Coarse-graining t ime T Scaled coarse-graining time i 

Scaled time coarse-grained local var iab le M, 

Figure 3. The distribution of M .  variables for spin- i  and  spin-I lsing models with L = 128, 
at criticality, for the same scaled coarse-graining t ime 7 (see text) .  The abscissa represents 
the scaled variable bM, where the ratio of the b values for the two models has  been chosen 
so that the distributions have the same variance. 
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in the window condition (3.1)). The distribution has the same characteristic double- 
hump structure as its spatial counterpart (Binder 1981, Bruce 1981) indicating that the 
two coarse-graining procedures provide access to similar configurational structure. 
The figure also shows the result of a similar calculation for the spin-1 model (at 
criticality) for the same scaled coarse-graining time ?. To absorb the difference between 
the basic timescales of the two models we have chosen a c value for the spin-1 model 
(2.2lb) of c“ )  = 3.191 = T ~ ” / T ; ’ ~ ’  where the latter ratio was determined by independent 
studies of the autocorrelation functions of the two models. To absorb the difference 
between the scales of the ordering fields of the two models we have plotted the 
distributions as functions of the scaled variables bM, (equation ( 2 . 2 1 ~ ) )  with b values 
assigned to the two models so that the distributions have the same variance. The level 
of agreement between the two data sets lends support to the contention that the 
phenomena in question d o  indeed display universal features, the essential character 
of which we will explore further in the following section. 

The scaling behaviour of the M ,  variable distribution is more explicitly explored 
in figure 4. The scaled moments A??) are related to the moments MI“’ of the M ,  
distribution by 

(3.2) 

To the extent that the M ,  distribution satisfies the scaling form ( 2 . 2 1 ~ )  the scaled 
moments may be written in terms of the scaled time ? = r /  L’ as 

Implicit in the logarithmic plots of these scaled moments, shown in figure 4, is the 
assignment z = 2.13 which we have taken from the analysis of the dynamics of spatially 
coarse-grained variables by Williams (1985). The extent of the data collapse shown 
in the figure is thus a test both of the general validity of the scaling form (3.3) and  of 

1.46 1, 
1.30- 

1.14 

$ 0.66 1 

( b !  

2 . 5 -  

- 
+ c 2 . 1 -  

5 5 1.1. 

L 

3 . 9 1  
I 

3.5 
‘0 2 6  1.2 5 .8  7 . L  9.0 

1 
0.504 I , , , I , , 

1.0 2 6  + 2  5 8  T +  90 
-In (scaled t ime!  

Figure 4. The logarithm of the scaled moment A?:’’ (defined i n  equation ( 3 . 2 ) )  ( a )  for 
n = 2 and i b )  for n = 4  for the spin-f lsing model at criticality, for a variety of system sizes 
L :  8 (71, 16 (01, 3 2  i L ) ,  64 i2) and  128 (0). The abscissa is the logarithm of the scaled 
time i defined in the text. The full  lines have slope - 2 n p l : u  and  arbitrarily chosen 
intercepts. 
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this specific assignment. Both claims pass their respective tests: the data collapse 
is most satisfactory (as it should be) for the largest system sizes and for the largest 
timescales (towards the left-hand extreme of the data). An explicit least-squares 
analysis of the L = 64 and L = 128 data sets, keeping only the observations associated 
with scaled coarse-graining times ? in excess of 7 = 80, yields optimum data collapse 
with the choice z = 2.10(5). 

The value of z is also inherent in these results in another way. To the extent the 
times 5 are sufficiently small (so that T << T”) ,  though not so small that the lower window 
condition ( T ,  << T )  is significantly violated, the scaled moments (3.3) will exhibit pure 
power law behaviour (with amplitudes Gy’ ( T = 0 ) ) .  This exception is tested in the 
figures which represent the appropriate power laws (characterised by indices nh,  = 
np/zv with n = 2 and n = 4 respectively) through the two straight lines. The intercepts 
have been chosen arbitrarily. Pure power law behaviour with the cited z value is most 
clearly evident for the L =  128 system in the regime of intermediate 7^ values, as one 
would expect. 

4. A fractal model of the time profile 

The general physical picture underlying the scaling theory developed in $ 2 and  tested 
in the preceding section is simple: the time profile of an ordering variable, time coarse 
grained to a sufficient degree, has the statistically timescale-invariant structure charac- 
teristic of a fractal (Mandelbrot 1983). The specific character of such a time profile 
will clearly reflect the dynamic universaiity class of the system. It seems hard to 
compute from first principles. We proceed, instead, to construct a simple phenomeno- 
logical model very similar, in spirit, to the droplet model of equilibrium behaviour 
developed by Bruce and Wallace (1983). 

Consider the time profile of some local variable 4 over some time interval of length 
T. The profile will consist of regions in which 4 = +1 and regions in which 4 = -1, 
separated by ‘time kinks’. It is thus tempting to model the statistics of the time profile 
in terms of the statistics of a time kink ‘gas’. However the kink representation is 
actually not the most tractable, since the kink variables can certainly not be regarded 
as being independent: a time kink represents the passage of the boundary of a droplet 
whose continued existence will tend to promote subsequent ‘time kinks’ separated by 
times which are some measure of &he spatial extent of that droplet. The simplest way 
of encoding this kind of kink correlation is to view the profile as being constructed of 
pairs of time kinks, forming ‘time droplets’ which are nested inside one another; the 
kink pairs might be thought of as two spin flips associated with the passage of (in 
some sense) the ‘same’ spatial interface; the associated time droplets have temporal 
extents ranging from 7, upwards, the larger members capturing the bias of the sign of 
the local variable induced by the presence of the spatially larger droplets. 

This picture is certainly oversimplified. We use it here to motivate a phenomenology 
which may have a greater validity. The phenomenology may be regarded as a prescrip- 
tion for constructing a typical time profile of an lsing variable 4. We envisage first a 
uniform profile, say +( 0 = 1, O <  r < T.  ( I n  the ensemble of profiles over which we 
must eventually average, uniform profiles d = 1 and 4 = -1 are supposed to occur 
with equal likelihood. 1 We then envisage ‘decorating’ the profile with time droplets 
first of phase 4 = -1 and  then subsequently of both phases, adding droplets of 
successively smaller temporal extent. At each stage of this decoration procedure (which 
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is implemented differentially) the probability that in a unit time interval of 4 = $1 
( 4  = -1) profile there will appear (as  a result of the decoration) new time droplets of 
phase 4 = -1 (c5 = +1) and of temporal extent (then under consideration) 7,' ~ , + d r ,  
is taken to be 

where D, the single parameter of the phenomenology, will be identified below. The 
specific form of this ansatz has been constructed by analogy with the equilibrium 
droplet theory (Bruce and  Wallace 1983). Its analogue in that context is explicitly 
justifiable in d = 1 + F dimensions. Here we adopt (4.1) as the simplest prescription 
that can account for the anticipated scaling properties of the coarse-grained variable. 

The prescription can be implemented explicitly (to the extent that D is a small 
parameter: see below) in a fashion paralleling the analysis of spatial coarse graining 
realised in the equlibrium droplet theory (Bruce and Wallace 1983). Accordingly we 
shall simply present the results. We introduce the characteristic function 

where bTr( t )  is the profile generated by decoration (as detailed above) with time droplets 
of all temporal scales in excess of the resolution time 7,. The average extends over 
the ensemble of decorated configurations consistent with the prescription (4.1). The 
key result can then be expressed in the claim that this characteristic function satisfies 
the differential equation 

d In P( Y ;  T,T,) = g[ 
This equation is to be solved with boundary condition 

(4.3a) 1. (2 7) ( 2  7) a In P (  Y ;  T, T,) 1-cos - +sin - . 
dY e- a 7, ' r  

P(  Y ;  7,T) =cos(  Y )  (4.3 b) 

expressing the supposedly structureless character of the undecorated time profile. 
The differential equation may be solved easily by making the cumulant expansion 

(2.36). Setting the resolution time T, = T , ,  assumed small compared to T, one finds for 
the n-point cumulant ( to which we now append the subscript 7,):  

(4.4) 
0 1 1 _  -(I l l  J , , ,  - J ,  ( r /7 , ) - 'Dn.  

Comparison with (2.19) shows that the phenomenological theory does indeed capture 
the scaling behaviour of the cumulants and identifies the time-droplet concentration 
parameter D as 

D = A7/2 = P/2zv. (4.5) 
Moreover the coefficients 7:' in (4.4) are, one discovers, uniquely prescribed (modulo 
the arbitrary overall scale assigned to the ordering field) in terms of the index D. In 
particular we find for the fixed point value of the cumulant ratio (2.22) the expansion 

G T = l  - 8 D / 3 + 0 ( D ' ) .  (4.6) 
The neglect of the O( D') terms is necessary for consistency: the decoration procedure 
can be implemented analytically only to the extent that D is sufficiently small that the 
time droplets constitute a dilute gas (Bruce and Wallace 1983). For the d = 2 univer- 
sality class of interest D is indeed a small parameter. Specifically, from (4.5) we find 
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D=O.O29 so that, from (4.6), GT-0.916. The result is somewhat higher than that 
suggested by the Monte Carlo work reported in 5 3. Part of the discrepancy is due to 
the simplistic boundary condition (4.3bj which does not address the existence of time 
droplets of temporal extent larger than T that may partially overlap the interval under 
examination. This effect can be taken into account: one finds that G: is then lowered 
by approximately 0.02. The remaining discrepancy doubtless reflects a more serious 
deficiency of the model, which encodes time kink correlations only in the simplest 
(and crudest) fashion consistent with a scaling picture. Nevertheless the level of accord 
gives reason to believe that the model captures some of the key physics of the time 
profile. 

5. Critical behaviour of local resonance lineshapes 

5.1. Background 

In this section we proceed to show how the theory of time-coarse-grained variables 
illuminates, and is potentially testable by, electron paramagnetic resonance ( E P R )  or 
nuclear magnetic resonance ( N M R )  studies of systems undergoing phase transitions. 

Consider, then, a system exhibiting a phase transition with the characteristics of 
the Ising universality class. We suppose that the system is doped with a small 
concentration of probe ions which, we will assume, d o  not perturb their environment 
to a significant degree. We focus on the resonant absorption of radiation associated 
with transitions between two specific Zeeman-split electronic or nuclear states of the 
probe ion. We denote by hwo the energy level separation in the absence of interaction 
between the probe ion and  its environment. We suppose that the ion couples to a 
single local degree of freedom, 4, of the k ing  ordered field. (The arguments which 
follow actually transcend this restriction.) Specifically we suppose that the energy 
level splitting hw for a given ion is actually a linear function of the local variable with 
which it interacts: 

hw = hwo+ p4 (5.1) 
where p is some constant. Finally we make the 'adiabatic' (or 'secular') approximation 
that the time variation of the local field 6 is slow on the scale of the inverse Larmor 
frequency U ; ' :  the effect of the 4 field is, then, simply to modulate the energy level 
splitting (in the fashion prescribed by equation (5.1)) rather than to induce further 
transitions. More formally this approximation may be regarded as involving the neglect 
of those terms in the Hamiltonian describing the sp in-6  variable interaction that d o  
not commute with the ion-spin Hamiltonian (Abragham 1961). Within these approxi- 
mations the resonant absorption at frequency w = w , , + R  is prescribed by the lineshape 
function (Abragham 1961, Kubo 1962) 

R (  0) = - Re d7  e'!'-S( 7 )  ( 5 . 2 ~ )  
x ' I,' 

where the relaxation function S ! T )  is defined by 

(5.26) 

The physical consequences of the fluctuations in the lsing field for the lineshape 
function ( 5 . 2 ~ )  depend both upon the timescale(s) of the fluctuations and upon the 
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parameter p (which may itself be regarded as an inverse timescale). I f  p is large 
enough (or, equivalently, if the timescale of the fastest of the 4 fluctuations is long 
enough) the relaxation function (5.26) will decay within a time short compared to that 
on which 4 evolves, so that 

S ( T ) = ( ~ - ' ~ ~ ~ )  (5.3a) 

(5.3b) 

where Po is the probability distribution of the 4 field. In this regime, then, the resonance 
spectrum is broadened in a fashion which directly reflects the static distribution of the 
perturbing field set up  by the local Ising variable. On the other hand, for smaller p 
values, the relaxation function S ( T )  will only begin to decay for times 7 long enough 
that, in the course of a typical T interval, the 4 field will exhibit significant fluctuations. 
Physically it is then clear that the probe will 'see' only some kind of time-averaged 
(and thus reduced) effective value of the local Ising field. The interaction broadening 
will thus be reduced with respect to the large-p limit. This is the phenomenon of 
motional narrowing (Abragham 1962). 

It is evident that the essential consequence of motional narrowing is to suppress 
the effects of the faster fluctuations in the perturbing field and thus, relatively, to 
enhance the effects of the slower longer-lived fluctuations. Accordingly one might 
expect that, with a suitable choice of the control parameter p, the resonance lineshape 
would provide a probe of the universal statistics of the large time-coarse-grained 
variables studied in the preceding sections. We now proceed to make this connection 
concrete, and to exploit it to provide specific predictions regarding resonance lineshape 
functions. 

5.2. General scaling theory 

Comparison of (5 .2b ) ,  (2.1) and (2.3) shows that the relaxation function S ( T )  is directly 
related to the characteristic function of the time-coarse-grained variables M - :  

(5.4) 

Now, provided the dominant contributions to S ( 7 )  originate in M ,  variables whose 
cumulants follow the scaling form (2.20), equation (5.4) shows that the relaxation 
function will itself exhibit the scaling behaviour 

~ ( 7 )  =.$(;I '7, T i ' T )  (5 .5a)  

~ ( 7 )  = (e-+Thf-) = B(p*P). 

where 

x E 1 - h ;  (5 .5b)  

/i E p / b  ( 5 . 5 ~ )  
while s' is a universal function, b is the scale factor introduced in (2.21a) and T" is 
the outer timescale defined by (2.21 b ) .  

To expose the conditions under which this scaling form may in fact be expected 
to hold we consider the consequences of allowing for some irrelevant scaling field in 
the scaling ansatz (3.18). We then find that the scaling relation ( 5 . 5 ~ )  assumes the 
modified form 

( 5 . 5 d )  S b ) = s ' ( C '  ' T ,  T , ~ ' T ,  UT-"' ' ) 
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where U gives a measure of the correction-to-scaling field and w ( > O )  is the associated 
index. Now for small enough p, s’ must certainly approach unity; accordingly, given 
(5 .5c ) ,  s’ can begin to exhibit significant structure (deviate from unity) only for times 
T of the order of ‘. For such times, UT-””’ will be of order uGw”‘ which may in 
principle be made arbitrarily small by choosing p to be appropriately small. The full 
scaling form ( 5 . 5 ~ )  for the relaxation function is then recovered. It then follows that, 
for sufficiently small p, the lineshape function R ( R )  will itself have a scaling form: 

(5.6) 

More explicitly, recalling equations (5.2a, b ) ,  (5.4) and ( 2 . 3 a ) ,  we find that the lineshape 
function may be expressed in terms of the time-coarse-grained variable distribution by 

(5.7) 

R ( R )  a ~ ~ ” ‘ ~ ( ~ - ” ‘ f i ,  F’ ‘To). 

R ( R )  =L Re lox dT e’”’ 1’ dM,  e-’CLTMTP( M,; 7, L,,). 
7T - - X  

We now turn to explore the consequences of these relations. 

5.3. Explicit results 

We consider first the fast  motion regime where the motional narrowing effect extends 
throughout the spectrum of critical fluctuations. This regime is identified explicitly by 
the condition 

(5.8) 

This condition ensures that times T sufficiently large for the relaxation function S ( T )  
to differ from unity (cf ( 5 . 5 ~ ) )  are also necessarily large compared to the outer timescale 
T ~ .  In  this regime (cf 5 2.2) the M ,  distribution will be Gaussian: 

P(M,; T, Lo)  = (2~rM;?’ ) - ’  exp(-M;/2ML2’) ( 5 . 9 ~ )  

- l l r  
/L To<< 1. 

(5.9b) 

The latter result follows on matching the general scaling form (2.20) to the central-limit- 
theorem result that M:?’- T-’ for large T. The parameter A is a non-universal constant 
whose value is in principle prescribed by the large-time behaviour of the autocorrelation 
function. Feeding these results into equation (5.7) we find for the lineshape function 
R ( R )  the Lorentzian form 

s w  1 
R ( R )  =- 

Tr h w 2 + R 2  ( 5 . 1 0 ~ )  

where 

= Ap2~: , - ’A-  (5.10b) 
gives the linewidth. As criticality is approached in a macroscopic system and T(,- 5’ 
increases, the motional narrowing becomes less effective and the line broadens. 
Introducing an index @ such that 

( 5 . 1 1 ~ )  
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which corrects a result proposed by Schwabl (1972), but is consistent with an earlier 
claim by Gottlieb and Heller (1971). 

These results are put to the test in figure 5. The data points represent the results 
of direct Monte Carlo measurements of the relaxation function S( T )  (equation (5.2b)) 
for the spin-$ Ising model at criticality, with p and L values chosen to satisfy the 
fast-motion condition (5.8) (where T"= L') .  The full curve represents the simple 
exponential decay given by the Fourier transform of ( 5 . 1 0 ~ ) :  

(5.12) 

The amplitude A was computed from an  independent study of the autocorrelation 
function: the comparison thus involves no free parameters. The scaling theory clearly 
passes this test. 

s ( T )  = e -AwlTl  = e - 4 P 2 L  28 ' 1 - 1  

We now turn to the slow motion regime characterised by the condition 

t(' 'To>>1. (5.13) 
In this regime the outer timescale is large enough (on the scale set by the resonance 
probe parameter p )  that the relaxation function (5.5a) is efectively that of a system 
at its critical point. Accordingly the distribution of M ,  variables contributing to the 
lineshape function will assume its non-Gaussian scale-invariant form 

(5.14) 

throughout the contributing range. The lineshape function then has the simple scaling 
form 

R(n)=t( - ' l 'R*( t ( - '  'a) (5.15a) 

The line 'width' (defined in any appropriate fashion) will vary with the resonance 
probe parameter p as 

A m - p '  ' (5.156) 

P (  M T ;  T,  Lo) = b&P*( b.rArM,) 

8:;ied t m 2  A D  L.' ' '  'T 

Figure 5. The relaxation function S ( T ~  (5.261 for the spin-f lsing model at criticality, for 
a variet) of system sizes L and resonance probe parameters p,  chosen to give realisations 
of t he jhs r  motion regime ( 5 . 8 ) :  (c') L = 3 2 ,  p = l x l @ - ' ;  ( * i  L = 3 2 ,  p = 7 . 5 ~ 1 0 - ' ;  ( x )  
L = 3 2 ,  p = 5 x l O - ' ;  I C )  L = 3 2 ,  p = 2 . 5 ~ 1 @ - ' ;  (Z) L = 1 6 ,  p = ? ~ l O - ~ ;  (2) L = 1 6 ,  
p = 1 . 5 4 ~ 1 @ - ~ ;  ( + I  L = 1 6 .  p = I x I O - ' ;  (5) L = 1 6 ,  p = 5 x I O - ' .  Representative error 
bars are indicated.  The full c u n e  is the exponential  (5 .12 ) .  
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which is to be contrasted with the stronger p dependence characteristic of the fast 
motion regime (5.10b). Using equations ( 5 . 7 )  and (5.14) we have computed the 
slow-motion fixed-point lineshape function (5.1 5 a ) ,  taking for the fixed-point distribu- 
tion Ph the form shown in figure 3, which is the best realisation available to us of the 
window condition (3.1). The result is shown in figure 6. In  this regime the strongly 
non-Gaussian character of the fixed-point MT distribution manifests itself in a corre- 
spondingly strongly non-Lorentzian lineshape, which is actually split into two distinct 
components. We shall return to this feature in the concluding discussion to which we 
now turn. 

6. Discussion and conclusions 

In this paper we have explored a simple but, we believe, novel way of exposing some 
of the universal features of the dynamic behaviour of systems undergoing phase 
transitions. 

At the most pedestrian level one may regard the time-coarse-graining method as a 
tool for the computation of the critical index z, being the natural extension to dynamic 
phenomena of the space-coarse-graining techniques developed by Binder ( 198 1) for 
the study of equilibrium critical phenomena. However, ‘ f  this is one’s primary aim, 
one would almost certainly d o  better to study the time-coarse-grained properties of 
the order parameter (the ‘magnetisation’) of the system, rather than that of the local 
variables we have studied here: the additional (implicit) spatial coarse graining will 
then serve to minimise the role of irrelevant scaling fields. 

At a somewhat deeper level there lies the nature of the time-coarse-grained configur- 
ations themselves. A number of issues remain unresolved here. We have already noted 
the similarity between the distributions of time- and space-coarse-grained variables, 
M ,  and M ,  respectively, which complements the striking insensitivity of the M ,  distribu- 
tions to the specific manner in which the coarse graining is implemented (Binder 1981, 
Bruce 1981). It seems possible that the constraints imposed by the conformal invariance 
of critical-point configurations (Cardy 1986) may offer some insight into this issue. 
The fractal character of the time profile of the ordering variable also merits further 
attention. The model deveioped in 0 4 is certainly a crude one. Nevertheless it may 
be possible to substantiate the ansatz (equation (4.1)) for the time kink concentration, 
at least within the kind of low-dimensional approximation within which its equilit,;am 
counterpart (for droplet concentration) is known to hold (Bruce and Wallace 1983). 

Finally we turn to the experimental level where the original motivation for this 
work is to be found. Our  theory of local resonance phenomena shows that, with the 
approach to criticality, the critical slowing down of the long-wavelength contributions 
to the local fluctuation spectrum drives a crossover in the lineshape from the Lorentzian 
form, appropriate in the fast motion regime (equation (5.8))  to a non-Lorentzian form 
in the critical slow motion regime (equation (5.13)). We make this claim in the context 
of resonance probes whose Larmor frequency is linearly dependent upon the local 
ordering variable (equation (5.1 ) ) .  The case of a quadratic shift has been studied by 
Mukamel er a/ (19831, although only within a cumulant expansion approximation; a 
qualitatively similar crossover effect is reported. In  the specific case of the two- 
dimensional system investigated here, the slow-motion fixed-point lineshape is actually 
split into two distinct components (figure 6 )  with a form very like that of the fixed-point 
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Figure 6. The lineshape function R ( n )  in the slow motion regime, computed from the 
fixed-point form of the M ,  distribution. 

M ,  distribution itself (figure 3). This is not hard to understand. Inspection of (5.7) 
and (2.21a) shows that, in the limit in which AT tends to zero, the lineshape function 
is, in fact, a direct image of the M ,  distribution. In two dimensions A, (=0.06) is 
small enough to maintain a close correspondence between the functions. In three 
dimensions, where A, (== 0.15) is significantly larger, this correspondence will be less 
close; moreover, in d = 3 it is clear, by analogy with the M ,  distribution studies (Bruce 
1981, Binder 1981), that the fixed-point M ,  distribution will be less structured than its 
d = 2 counterpart, presumably singly peaked. Accordingly, in this case, one might 
expect a critical point lineshape function with a single somewhat flattened peak. 

One can certainly find much in the experimental literature that appears to be in at 
least qualitative accord with this picture. The ‘accord’ has to be viewed with consider- 
able caution. Electron paramagnetic resonance studies of the 105 K structural phase 
transition in SrTiO, (Muller and von Waldkirch 1975, Bruce er al  1979) d o  show a 
crossover from a Lorentzian to a flattened ‘over-Gaussian’ form within a few degrees 
of the phase transition, qualitatively similar to the picture (of three-dimensional 
systems) advanced above. However it remains far from clear that the effect is charac- 
teristic of the ideal defect-free critical dynamics envisaged here. 

Both EPR and N M R  studies have also shown pretransitional splitting in spectral 
lines in a wide variety of hydrogen-bonded materials exhibiting structural phase 
transitions, as reviewed by Blinc (1977), Muller (1979) and Dalal (1982). I n  most 
instances, however, this ‘crossover’ occurs at a temperature T*( p )  relatively far above 
the transition temperature T,. Accordingly it is unlikely either that the dominant 
fluctuations are of long wavelength, or that the latter fluctuations have the asymptotic 
scaling characteristics assumed here. ( I n  any case we would not expect that the critical 
fluctuation spectrum for this universality class would support a split fixed point 
lineshape.) For the theory developed here to be applicable, the resonance probe must 
be such that the parameter p is small enough to ensure motional discrimination against 
the faster short wavelength modes. This condition is more likely to be fulfilled the 
closer the crossover temperature T * ( F  1 is to the critical temperature T,. In  this respect 
the N M R  study of the phase transition in  squaric acid, reported by Mehring and 
Suwelack (1979) appears more promising. The “C resonance line studied begins to 
develop non-Lorentzian structure some two degrees above the 370 K phase transition. 
At the phase transition temperature itself the spectrum has a double-line form very 
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like that shown in figure 6. Again, however, this correspondence is most probably 
illusory. For, although our theory would account for the limiting form of the lineshape, 
we d o  not believe that it would account for the manner in which the lineshape evolves 
towards this form as the phase transition is approached. The observations show that 
the two lines present in the spectrum at the phase transition actually first appear as 
wings on a further, central, line; the latter (the dominant feature above 372 K)  disap- 
pears as the phase transition is approached. By contrast, tentative studies of the 
fast-slow motion crossover identified in the preceding section (exploiting the corre- 
sponding crossover displayed in the M ,  distribution: cf figure 1) suggest that, with the 
approach to criticality, the central line simply splits to give the double-line slow motion 
spectrum. Thus it seems more likely that the behaviour observed in squaric acid should, 
as suggested by Mehring and Becker (1981), be regarded as evidence that the phase 
transition is slightly first order. 

We conclude that existing data d o  not offer a substantive test of the predictions 
made here for a fluctuation-driven crossover to a slow motion lineshape characteristic 
of the universality class. To provide such a test one should ideally examine a nuclear 
resonance of a host crystal ion (to eliminate the concerns associated with the introduc- 
tion of EPR centres) in a quasi-two-dimensional system (where deviations from Lorent- 
zian behaviour will be most pronounced) exhibiting a continuous phase transition 
(free of the ambiguities associated with a first-order transition) and with a coupling 
parameter p sufficiently small that the line splitting occurs (if indeed it does!) as close 
as possible to the critical temperature. 
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